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Although the behaviour of fluid-filled vesicles in steady flows has been extensively
studied, far less is understood regarding the shape dynamics of vesicles in time-dependent
oscillatory flows. Here, we investigate the nonlinear dynamics of vesicles in large
amplitude oscillatory extensional (LAOE) flows using both experiments and boundary
integral (BI) simulations. Our results characterize the transient membrane deformations,
dynamical regimes and stress response of vesicles in LAOE in terms of reduced volume
(vesicle asphericity), capillary number (Ca, dimensionless flow strength) and Deborah
number (De, dimensionless flow frequency). Results from single vesicle experiments are
found to be in good agreement with BI simulations across a wide range of parameters. Our
results reveal three distinct dynamical regimes based on vesicle deformation: pulsating,
reorienting and symmetrical regimes. We construct phase diagrams characterizing the
transition of vesicle shapes between pulsating, reorienting and symmetrical regimes within
the two-dimensional Pipkin space defined by De and Ca. Contrary to observations on
clean Newtonian droplets, vesicles do not reach a maximum length twice per strain
rate cycle in the reorienting and pulsating regimes. The distinct dynamics observed in
each regime result from a competition between the flow frequency, flow time scale and
membrane deformation time scale. By calculating the particle stresslet, we quantify the
nonlinear relationship between average vesicle stress and strain rate. Additionally, we
present results on tubular vesicles that undergo shape transformation over several strain
cycles. Broadly, our work provides new information regarding the transient dynamics of
vesicles in time-dependent flows that directly informs bulk suspension rheology.
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1. Introduction

In recent years, fluid-filled vesicles have been used in a wide array of technological
applications ranging from food products to bioinspired microreactors, and reagent delivery
applications in functional materials (Huang & MacDonald 2004). Moreover, giant
vesicles are widely regarded as a model membrane system in various biophysical and
biochemical processes (Boal 2002; Dimova & Marques 2019). In these applications,
precise characterization of the membrane shape dynamics in response to a fluid flow is
of fundamental importance. Despite the increasing prevalence of vesicles in biophysics
and materials science, we lack a complete understanding of how time-dependent flows
influence the membrane shape dynamics and overall rheological response of vesicle
suspensions (Vlahovska, Podgorski & Misbah 2009; Abreu et al. 2014). Lipid vesicles
consist of a small amount of fluid enclosed by a bilayer membrane of thickness �5 nm.
This molecularly thin membrane enables intriguing morphological dynamics for vesicles,
including complex conformations in linear flows (Deschamps et al. 2009; Dahl et al.
2016; Lin & Narsimhan 2019; Kumar, Richter & Schroeder 2020a), nonlinear stretching
behaviour, and heterogeneous relaxation following deformation (Zhou et al. 2011; Yu et al.
2015; Kumar, Richter & Schroeder 2020b).

Recent advances in experiments, computations and theory have largely focused on
vesicle dynamics in steady shear flows (Abreu et al. 2014). These studies have revealed
three dynamical regimes: tumbling, trembling and tank-treading. Relevant research in
shear flow includes investigation of the hydrodynamic lift of a single vesicle near a
wall (Callens et al. 2008; Podgorski et al. 2011; Zhao, Spann & Shaqfeh 2011), pair
interactions between two vesicles (Kantsler, Segre & Steinberg 2008; Vitkova et al.
2008), the amplification of thermal fluctuations in the transition regime between tumbling
and tank-treading (Zabusky et al. 2011; Levant et al. 2012; Abreu & Seifert 2013), and
characterization of tank-treading, vacillating-breathing (trembling) and tumbling motion
with increasing viscosity ratio between the interior and the exterior of the vesicle (Kantsler
& Steinberg 2005, 2006; Misbah 2006; Mader et al. 2006; Vlahovska & Gracia 2007;
Deschamps et al. 2009). The phase diagrams of the dynamical regimes in simple shear
flow have been well analysed over a number of studies, and the theory agrees well with
experiments and simulations (Danker et al. 2007; Lebedev, Turitsyn & Vergeles 2007;
Vlahovska & Gracia 2007; Farutin, Biben & Misbah 2010). Knowledge of single vesicle
dynamics has been essential for interpreting the bulk rheological response for dilute vesicle
suspensions. For instance, it is now known that the tank-treading to tumbling behaviour of
vesicles directly affects the bulk viscosity of the suspension, where tumbling results in a
higher bulk viscosity with the minimum bulk viscosity occurring at the tank-treading to
tumbling transition (Vlahovska et al. 2009).

Compared with the vast body of experiments in shear flows, vesicle dynamics in
hyperbolic flows even for the canonical case of steady elongational flow are more
challenging to understand. In extensional flow, fluid elements separate exponentially in
time (Leal 1992), and it is generally not possible to observe a single vesicle in flow for
long periods of time in the absence of feedback controllers. Automation in flow control
techniques using sophisticated feedback algorithms has recently enabled the precise
characterization of vesicle dynamics in elongational flows (Shenoy, Tanyeri & Schroeder
2015; Shenoy, Rao & Schroeder 2016; Shenoy et al. 2019; Kumar et al. 2019, 2020c).
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Vesicle dynamics in large amplitude oscillatory extension

In a steady extensional flow, it is known that highly deflated tubular vesicles undergo a
conformation change to a symmetric dumbbell shape (Kantsler et al. 2008; Narsimhan,
Spann & Shaqfeh 2014, 2015; Kumar et al. 2020a) while moderately deflated vesicles
transition to an asymmetric dumbbell shape (Dahl et al. 2016; Kumar et al. 2020a).
Precise control over the centre-of-mass position of single vesicles led to detailed studies
of the transient and steady-state stretching dynamics of membranes (Kumar et al. 2020a),
and direct observation of the double-mode relaxation following high deformation (Kumar
et al. 2020b). Prior work in unsteady flows has been limited to a one-time reversal of
elongational flow and reported membrane wrinkling shapes for quasi-spherical vesicles
(Kantsler, Segre & Steinberg 2007).

Extensional flows are commonly encountered in microfluidic devices that utilize
contractions or expansions, porous media and other complex channel geometries.
Moreover, in vivo capillaries and complex microfluidic devices that have many
bifurcations and sharp directional changes routinely encounter time-dependent pulsatile
flows. The biomedical community has created several biomimetic capillary designs
that contain several rows of bifurcations and contractions with small angle zigzags
in-between, resulting in improved flow control and lower fluid flow resistance (Lim
et al. 2003; Domachuk et al. 2010). In general, elastic particles traversing through
these fluidic systems experience spatially dependent external flows and will not reach
a steady-state conformation. From this view, there is a need for comprehensive studies
on how microscopic stretching and compression of vesicles in complex, time-dependent
oscillatory flows will affect their shape and bulk rheology.

Recently, the shape dynamics of elastic capsules were studied numerically in large
amplitude oscillatory extensional (LAOE) flow (Bryngelson & Freund 2019). However,
the non-equilibrium stretching and compression dynamics of lipid vesicles in LAOE
flows is largely unexplored. Vesicle dynamics are strongly governed by membrane
bending elasticity; therefore, we anticipate that vesicles will exhibit qualitatively different
behaviours than capsules in time-dependent extensional flow. In this paper, we study the
dynamics of single vesicles in LAOE using a combination of microfluidic experiments
and boundary integral (BI) simulations. The LAOE experiments are performed using
the Stokes trap (Shenoy et al. 2016, 2019; Kumar et al. 2019, 2020c), which is a new
method for controlling the centre-of-mass position, orientation and trajectories of freely
suspended single and multiple vesicles using only fluid flow. We find that single vesicles
experience periodic cycles of compression and extension in LAOE with membrane
dynamics governed by the dimensionless flow strength capillary number (Ca), reduced
volume (measure of vesicle asphericity, ν) and flow frequency Deborah number (De).
Experimental results are compared with BI simulations without thermal fluctuations,
and our results show that BI simulations accurately capture the dynamics of single
quasi-spherical vesicles over a wide range of parameters. In addition, we identify three
distinct dynamical regimes for vesicle dynamics, including the pulsating, reorienting and
symmetrical regimes, based on the amount of deformation occurring in each half-cycle of
the LAOE flow. The qualitatively different dynamics observed in each regime results due
to a competition between the flow frequency, flow time scale and membrane deformation
time scale. We further construct precise phase diagrams characterizing the transition of
vesicle shapes between pulsating, reorienting and symmetrical regimes. We find that the
relationship between average vesicle stress and strain rate is nonlinear, which is discussed
in the context of bulk suspension rheology. Finally, we present results on the shape
dynamics of long tubular vesicles in LAOE which exhibit markedly different behaviour
in flow compared with their quasi-spherical analogues. Taken together, our results provide

929 A43-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

88
5

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f I

lli
no

is
 a

t U
rb

an
a 

- C
ha

m
pa

ig
n 

Li
br

ar
y,

 o
n 

02
 N

ov
 2

02
1 

at
 1

6:
12

:5
1,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2021.885
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


C. Lin, D. Kumar, C.M. Richter, S. Wang, C.M. Schroeder and V. Narsimhan

new insights into the direct observation of membrane dynamics during time-dependent
oscillatory flows, which opens new avenues for understanding bulk suspension rheology
in unsteady flows.

2. Methods

2.1. Vesicle preparation
A mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC, Avanti Polar Lipids) and
0.12 mol% of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B
sulfonyl) (DOPE-Rh, Avanti Polar Lipids) is used to generate giant unilamellar vesicles
(GUVs) with the electroformation process described by Angelova et al. (1992). For
electroformation of GUVs, a stock lipid solution in chloroform is prepared with
25 mg ml�1 DOPC and 0.04 mg ml�1 DOPE-Rh for fluorescent imaging. Next, 10 µl of
the lipid solution in chloroform is spread on a conductive indium tin oxide (known as
ITO) coated glass slide (resistance 5 �, 25 × 50 × 1.1 mm, Delta Technologies) and dried
under vacuum overnight. The pair of indium tin oxide slides are sandwiched together
using a 1.5 mm Teflon spacer, forming a chamber with a volume of �2.4 ml and coupled
to a function generator (Agilent 33220 A). The electroformation chamber is filled with
a mixture of 100 mM sucrose solution (Sigma-Aldrich), and glycerol-water is added to
achieve a total viscosity of 0.030 Pa s measured using a benchtop viscometer (Brookfield)
at 22 �C. An alternating current electric field of 2 V mm�1 is then applied at 10 Hz for
120 min at room temperature (22 �C). Under these conditions, DOPC lipid remains in the
fluid phase (Kantsler & Steinberg 2005). Most of the vesicles prepared by this method are
quasi-spherical and unilamellar with few defects in the size range of 5–25 µm in radius.

2.2. Stokes trap for large amplitude oscillatory extension
It is challenging to observe vesicle dynamics in time-dependent extensional flow for long
periods of time while simultaneously imposing precisely controlled flow rates. To achieve
this, we used the Stokes trap (Shenoy et al. 2016; Kumar et al. 2020c) to precisely position
the centre-of-mass of single vesicles near the centre of a cross-slot microfluidic device
for long times using model predictive control (figure 1a). Briefly, the centroid of a single
vesicle is determined in real-time using image processing and fluorescence microscopy
and is communicated to the controller. The controller determines the optimal flow rates
through four-channels of the device to maintain a fixed vesicle position with desired
strain rate. The flow rates are then applied through four independent pressure regulators
(Elveflow). During this process, the device operates at a net positive pressure so that each
of the four ports can act as an inlet or outlet. This whole procedure requires �30 ms in
a single cycle, as previously described (Shenoy et al. 2016; Zhou & Schroeder 2016a,b).
In this work, a sinusoidal strain rate input is imposed (figure 1b) while simultaneously
trapping a single vesicle such that

�εx(t) = ��ε0 sin
�

2�
T

t
�

, (2.1)

�εy(t) = �ε0 sin
�

2�
T

t
�

, (2.2)

where T is the period of the sinusoidal cycle and �ε0 is the maximum strain rate in one
cycle. During the first half-cycle for 0 < t < T/2, the x-axis is the compressional axis and
the y-axis is the elongational axis ( �εx(t) < 0, �εy(t) > 0), and the fluid is delivered from
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Pressure regulator

Fluid reservoir
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��x (t)<0, ��y (t)>0 ��x (t)>0, ��y (t)<0 ��x (t)

(b)

(a)

Figure 1. Stokes trap for studying vesicle dynamics in LAOE flow. (a) Schematic of the experimental
set-up used to generate planar extensional flow. Inlet/outlet channels in the polydimethylsiloxane (PDMS)
microfluidic device are connected to fluidic reservoirs containing the vesicle suspension and pressurized by
regulators controlled by a custom LabVIEW program, thereby generating pressure-driven flow in the cross-slot.
(b) Schematic of the sinusoidal strain rate input function for one full cycle. The insets are schematics showing
the oscillatory extensional flow profile in the microfluidic cross-slot device during the first half (0 < t < T/2)
and second half-period (T/2 < t < T) of the cycle.

the two horizontal inlets of the microfluidic device by the pressure regulators (figure 1b).
During the second half-cycle for T/2 < t < T , the direction of flow reverses, and fluid
is delivered by the two vertical ports in the cross-slot device as shown in figure 1(b).
We note that during vesicle trapping, the correctional pressure required for controlling
the vesicle’s position is small compared with the magnitude of the base pressure used to
generate the oscillatory extensional flow (Shenoy et al. 2016). Thus, the strain rate is well
defined during the LAOE cycle, which is determined as a function of the input pressure
using particle tracking velocimetry (known as PTV) as previously described (Kumar et al.
2020a). We also determined the characteristic response time for actuating fluid flow in
the microfluidic device in response to a step change in pressure. For an extreme change
in pressure from 0 to 27.58 kPa (strain rate jump from 0 to �30 s�1), the rise time
and settling time are �20 ms and �300 ms, respectively (figure S1, see supplementary
material). However, the maximum value of pressure used in our experiments is 2.76 kPa,
which is continuously varied with small incremental changes during the LAOE cycle, for
which we generally expect much smaller characteristic response times. Nevertheless, the
lowest cycle time T in our experiments is 2 s which is much larger than the maximum
characteristic response time for actuating flow in the device corresponding to a step input
pressure.
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For all experiments, single vesicles are first trapped and imaged for 10–30 s under zero
flow conditions to allow for equilibration, followed by LAOE flow for at least two strain
rate cycles. During the equilibration step, the vesicle reduced volume ν and equivalent
radius a are determined, as previously described (Dahl et al. 2016; Kumar et al. 2020a).
Reduced volume ν is a dimensionless quantity that measures the amount of osmotic
deflation, and is described as

ν =
3V

�
4�

A3/2 , (2.3)

where V and A are the vesicle volume and surface area, respectively. The equivalent
radius a of the vesicle is obtained as a =

�
A/4�. Specifically, ν is a measure of vesicle

asphericity such that ν = 1 represents a perfectly spherical shape. For the experiments in
§ 3.1, 3.2, 3.4 and 3.5, the typical range of reduced volume is 0.75 < ν < 1, while vesicles
in §§ 3.6 have ν < 0.75.

The maximum strain rate �ε0 experienced by a vesicle in a half-cycle is
non-dimensionalized to define a capillary number Ca = μout �ε0a3/κ where μout is the
suspending medium viscosity, a is the equivalent vesicle radius and κ is the membrane
bending modulus. Prior to vesicle experiments in LAOE flow, we determined the average
bending modulus of nearly spherical vesicles to be κ = (22.3 – 0.5)kBT using contour
fluctuation spectroscopy (Kumar et al. 2020a). Similarly, the cycle period is rendered
dimensionless by the bending time scale to define the Deborah number De = μouta3/κT .
Single vesicle experiments are generally performed in the range 10 < Ca < 1000 and
0.1 < De < 100 by adjusting the input pressures and strain rate cycle periods. Only
vesicles near the centre plane of the microchannel (with respect to the z-direction) are
considered during experiments. Single vesicle trajectories are analysed using a custom
MATLAB program that allows for determination of the vesicle deformation parameter in
the flow.

2.3. Numerical methods

2.3.1. Governing equations and non-dimensionalization
The system is modelled as a droplet surrounded by a two-dimensional (2-D)
incompressible membrane with a bending resistance. At the length scale of a GUV
(a � 10 µm) with a strain rate at �ε � 1 s�1 the Reynolds number is Re = �ερa2/μ � 10�4,
allowing us to model the inner and outer velocity fields using the Stokes equations. Due
to the nature of the time-dependent flow, it is also important to check the Womersley
number to assess whether the time-dependent Stokes equations are required. At a flow
frequency of ω = 10 s�1, the Womersley number is α =

�
ωρa2/μ � 0.03. In this work,

the flow frequencies are ω < 10 s�1, therefore, the time-dependent Stokes equations are
not necessary. The Stokes equations are

� • u = 0, �p = μ�2u, (2.4a,b)

where u is fluid velocity, p is the pressure and μ is the fluid viscosity (μin for the inner
fluid and μout for the outer fluid). The system is subject to continuity of velocity across
the interface and a traction balance across the phospholipid bilayer. The short time scales
and low deformation rates used in previous studies makes membrane dilatation negligible
(Rawicz et al. 2000; Henriksen & Ipsen 2004). Vesicles are also known to have negligible
shear rigidity as they do not have a cytoskeletal network or an actin cortex. We therefore
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Vesicle dynamics in large amplitude oscillatory extension

use the Helfrich model (Helfrich 1973) for the membrane:

H =
�

κ

2
(2H)2 dA +

�
σ dA. (2.5)

In (2.5), H represents the elastic energy of the vesicle membrane, κ is the membrane
bending modulus, H is the mean curvature and σ is the surface tension. The surface
tension is a spatially varying Lagrange multiplier that ensures local area conservation.
The surface tension enforces �s • u = 0 on the interface, where �s = (I � nn) • �. We
note that the original Helfrich model includes spontaneous curvature, a parameter to
describe a membrane’s curvature preference when the sides of the bilayer are chemically
different. Although biological vesicles may have multiple lipid components or chemical
differences between the inner and outer fluids (Deuling & Helfrich 1976; Dobereiner,
Selchow & Lipowsky 1999; Bagatolli & Sunil Kumar 2009), our experiments focus
on simple vesicles with only a viscosity difference between the inner and outer fluids,
prompting a negligible spontaneous curvature. We further neglect contributions from
thermal fluctuations, membrane viscosity and bilayer friction (Seifert 1997; Noguchi &
Gompper 2005).

The force balance at the membrane surface is

[[f ]] = [[T • n]] = ft + fb, (2.6)

ft = (2Hσn � �sσ), (2.7)

fb = κ(4KH � 4H3 � 2�2
s H)n, (2.8)

where [[ f ]] is the jump in viscous traction across the interface which can be decomposed
into the bending (fb) and tension (ft) contributions, n is the outward-pointing unit normal
vector and K is the Gaussian curvature of the interface. The mean curvature H is defined
to be one for the unit sphere.

The vesicle is placed in a time-dependent extensional flow field described by u� =
�u� • x and defined as

�uuu� = �ε0

�

�
� sin(2�ωt) 0 0

0 sin(2�ωt) 0
0 0 0

�

	 , (2.9)

where ω is the frequency of the oscillatory flow and �ε0 is the maximum strain rate.
The membrane area (A) is maintained constant by the incompressibility constraint

while the low permeability of the membrane allows us to assume that the volume (V)
of the vesicle is constant during the time scale of experiments (minutes). Therefore,
we non-dimensionalize distances by the equivalent radius a =

�
A/(4�), time scales by

κ/a3μout, velocities by κ/a2μout, stresses by κ/a3 and surface tensions by κ/a2. We obtain
four relevant dimensionless groups from the non-dimensionalization:

Ca �
μout �ε0a3

κ
, De �

ωa3μout

κ
,

� �
μin

μout
, ν �

3V
4�a3 .



���

��

(2.10)

These parameters were previously described in § 2.2 and are elaborated upon here. The
base capillary number (Ca) compares the viscous stress with the bending stress and
corresponds to the non-dimensionalized, maximum extension rate experienced by the
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vesicle during the flow cycle. Here De is the flow frequency non-dimensionalized by the
bending time scale. When De 	 1, the fluid flow will have a short cycle time compared
with the membrane’s bending time. The viscosity ratio (�) is the ratio of inner and outer
fluid viscosities. Cellular systems such as red blood cells (known as RBCs) commonly
have a more viscous inner fluid, and this parameter can be tuned to more closely model
the system of choice. The reduced volume (ν) is a measure of the asphericity of the
vesicle, corresponding to its osmotic deflation. For example, a reduced volume of ν = 1
corresponds to a perfectly spherical vesicle shape, while a value of ν = 0.2 would be
a highly deflated one. One can experimentally alter the reduced volume of a vesicle by
introducing an osmotic pressure difference between the inner and outer membranes, for
example by adding sucrose to the outer fluid.

Applying this non-dimensionalization, the external velocity gradient becomes

�uuu� = Ca

�

�
� sin(2�De t) 0 0

0 sin(2�De t) 0
0 0 0

�

	 , (2.11)

where all parameters are assumed to be non-dimensional from this point forward.

2.3.2. BI formulation
The Stokes flow assumption enables the use of the BI (Green’s function) formulation to
simulate vesicle shape dynamics. The Stokes equations are recast into a BI form

1 + �
2

uj(x0) = u�
j (x0) �

1
8�

�

S
Gij(x, x0)[[ fi]](x) dA(x)

+
1 � �
8�

�

S
Tijk(x, x0)ui(x)nk(x) dA(x) (2.12)

where u�
i is the external velocity field, x0 is the singularity point and [[ fi]] is the jump in

viscous traction across the interface, given in (2.8). The kernels Gij(x, x0) and Tijk(x, x0)

are the Stokeslet (point force) and stresslet (point dipole) solutions to Stokes flow

Gij(x, x0) =
δij

r
+

�xi �xj

r3 , (2.13)

Tijk(x, x0) = �6
�xi �xj �xk

r5 , (2.14)

where �x = x � x0 and r = |�x|. Repeated indices are assumed to be summed in the above
equations. These equations are also subject to the membrane incompressibility constraint:

�s • u = 0. (2.15)

2.3.3. Implementation details
Implementation details for the simulations are similar to prior work (Lin & Narsimhan
2019). Here, we reiterate how some aspects are handled, and highlight a few key
differences. We solve the boundary element method system with the general minimal
residual method (known as GMRES) in parallel using PETSc over the message passing
interface (known as MPI). The curvature of the surface is approximated by a subdivision
surface (Cirak, Ortiz & Schröder 2000; Spann, Zhao & Shaqfeh 2014). Integrals over the
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Vesicle dynamics in large amplitude oscillatory extension

triangular elements are evaluated using Gaussian quadrature, where singular elements
are handled by using the Duffy quadrature rule for singular kernels (Duffy 1982). We
use a time-stepping procedure that is equivalent to the one in Zhao & Shaqfeh (2013).
The surface incompressibility constraint is enforced by the Lagrange multiplier σ , which
is locally determined with each time step. The constant volume constraint is inherently
enforced by the Stokes flow assumption for the inner and outer fluids, but the time-stepping
procedure used for the surface positions can still give a slight drift in volume over long
times (Zhao & Shaqfeh 2013). We use a scaling procedure with an arbitrary relaxation
parameter of 0.1 that limits the scaling such that the correction is not immediately
applied, but rather applied over several time steps to keep the volume consistent. Graphs
showing the surface area and volume error are shown in the supplementary material
(figure S11) available at https://doi.org/10.1017/jfm.2021.885. These errors oscillate and
the maximum surface area errors are below 0.1 % while the maximum volume errors are
below 0.2 %.

For meshing the vesicle, we start with an icosahedron and subdivide the mesh into
1280 elements for a quasi-spherical vesicle and 5120 elements for the tubular vesicles.
In the following sections, we analyse the deformation parameter of the vesicles; we
found the 1280 element mesh to be sufficiently accurate capturing this information.
A figure comparing the deformation parameter over several flow cycles for the 1280
element mesh and a 9680 element mesh is in the supplementary materials (figure S12).
We tested mesh sizes from 720 elements to 9680 elements and found no significant
difference in the deformation parameter over the flow cycles between them. However,
the 1280 element mesh used does not accurately resolve the wrinkling dynamics. Our
implementation does not take into account thermal fluctuations, making it unlikely
the simulations would accurately predict the wrinkling dynamics even with smaller
element sizes. Therefore, we chose to use lower element meshes to reduce computation
time.

To form the initial vesicle shape for our simulations, we use a scaling transformation
on the subdivided icosahedron to deform the mesh into a prolate spheroid with the
desired reduced volume ν, followed by relaxing the mesh to its equilibrium (no flow)
configuration. In this way, the vesicle has a prolate spheroid-like shape at the start of any
cycle. It is possible to start with an oblate spheroid or any arbitrary ellipsoid-like shape,
but it has been shown that the global minimum energy state for a vesicle with reduced
volume greater than 0.652 is of the prolate shape family (Seifert 1997). After forming the
initial vesicle shape, vesicle dynamics are simulated in oscillatory flow with a time step of
10�3 strain units.

The majority of the analysis in this study is focused on vesicle behaviour that has reached
a steady limit cycle in time-dependent flow, such that the dynamics are the same regardless
of the number of additional strain rate cycles. The start-up dynamics have been simulated
but are not elaborated on in this paper. We simulate vesicles of reduced volumes between
0.60 < ν < 0.90 and viscosity ratios � = 0.1, 1.0 and 10 for flows with capillary numbers
1 < Ca < 80 and Deborah numbers 1 < De < 10. Significantly higher capillary numbers
(Ca � 200) become numerically intractable as the time step needed for convergence in our
implementation becomes prohibitively small. Higher and lower De can be simulated, but
the current range of values is sufficient for comparison with the majority of experimental
conditions for GUVs in microfluidic devices.

We define the parameter

Cax(t) � �Ca sin(2�De • t) (2.16)
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which represents the time-dependent capillary number in the x-direction. This will be the
measure used for the instantaneous strain rate. We also define a deformation parameter

D �
lx � ly
lx + ly

, (2.17)

where lx and ly are the x- and y-axis lengths of the vesicle, respectively, or the length of the
axes of the equivalent ellipsoid. In the experiments, lx and ly are computed from the vesicle
microscopy movies using a custom image processing algorithm as described in Zhou &
Schroeder (2016a) and Kumar et al. (2020a). For the simulations, the lengths of the vesicle
in the x- and y-axes are computed. The deformation parameter (D) provides a measure of
vesicle shape distortion. For D values near zero, the vesicle shape projected in the x–y
plane will be circular. Positive values of D � 0.50 correspond to prolate spheroid-like
shapes along the x-axis, while negative values correspond to the same shapes along the
y-axis.

3. Results and discussion

3.1. Dynamical regimes
Experiments were performed in the range of approximately 10 < Ca < 1000 and 0.5 <

De < 100, whereas the majority of the simulations are in the range of 1 < Ca < 40 and
1 < De < 10. Simulations were performed for several vesicles matching the conditions
in the experiments, as discussed in the following section (figures 2–4). It is possible to
perform additional simulations at Ca � 100, but current results suggest that the vesicle
dynamics do not significantly change at higher Ca for quasi-spherical vesicles.

We observe three dynamical regimes of vesicle dynamics based on the ratio between
capillary number and Deborah number. We refer to these regimes as symmetrical,
reorienting and pulsating. The transitions between these regimes are continuous – in other
words, there is no bifurcation between the regimes in the sense that the dynamics change
suddenly. We define the regimes based on the deformation characteristics of vesicles in
each case: symmetrical when the vesicle deforms to the same length in both orientations;
pulsating when the vesicle’s major axis stays along the same orientation; reorienting
for the region between symmetrical and pulsating where the vesicle major axis changes
orientation but does not deform to the same maximum length in both directions. Vesicles
in all three regimes can experience significant nonlinear stress responses. Snapshots of
vesicle shapes from simulations and experiments for each of these regimes over a full
strain rate cycle are shown in figures 5 and 6.

We quantitatively compare the simulations and experiments by plotting the deformation
parameter D (defined in (2.17)) and instantaneous strain rate Cax (defined in (2.16)) as
a function of time, as shown in figures 2 and 3. Experimental trajectories are generally
limited to 2–4 strain rate cycles due to the photobleaching of the vesicle membrane during
fluorescence imaging experiments. Observing vesicle deformation over more strain rate
cycles is experimentally feasible, however, we generally opted to observe dynamics under
different experimental parameters (Ca, De) for the same vesicle in a series of subsequent
experiments. For the numerical data, we simulated vesicle dynamics over at least 10 strain
rate cycles.

Symmetrical regime. Starting with the symmetrical regimes results, we find the
symmetrical regime occurs under flow conditions where the vesicle deformation time
scale is shorter or exactly equal to half of a strain rate cycle. Based on our simulations,
this occurs approximately when Ca 
 3.33De for a vesicle with a reduced volume
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Figure 2. Transient deformation parameter D for vesicle dynamics in time-dependent LAOE from experiments
and simulations. All vesicles have a viscosity ratio of � = 1.0. The �ε/Ca line is the instantaneous strain rate of
the external flow along the x-axis. A negative �ε/Ca value is compression along the x-axis. For each panel: (a)
Ca = 28.8, De = 6.40, ν = 0.85; (b) Ca = 10.9, De = 3, ν = 0.88; (c) Ca = 17.9, De = 6, ν = 0.91; (d) Ca =
28.8, De = 12, ν = 0.85; (e) Ca = 10.9, De = 4.5, ν = 0.88; ( f ) Ca = 17.9, De = 14.9, ν = 0.91; (g) Ca = 28.8,
De = 48, ν = 0.85; (h) Ca = 10.9, De = 18.2, ν = 0.88; (i) Ca = 17.9, De = 29.9, ν = 0.91.

ν = 0.80. Our experiments and simulations show that vesicle dynamics in the symmetrical
regime are described by two common characteristics (figure 4). First, the vesicle reaches
approximately the same maximum length twice during one strain rate cycle, regardless of
Ca. The observation of a maximum length is reasonable for quasi-spherical vesicles, as it
has been shown that vesicles with ν > 0.75 have a stable steady-state shape at infinite
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Figure 3. Lissajous-type curves of the deformation parameter D versus the dimensionless instantaneous strain
rate. All vesicles have a viscosity ratio of � = 1.0. Black data points are experimental data; purple data points
show numerical data. The oscillatory strain rate cycle is separated into four parts that have been noted with
different markers, as shown in the legend in the bottom right-hand corner of each panel. For each panel: (a)
Ca = 28.8, De = 6.4, ν = 0.85; (b) Ca = 10.9, De = 3, ν = 0.88; (c) Ca = 17.9, De = 6, ν = 0.91; (d) Ca =
28.8, De = 12, ν = 0.85; (e) Ca = 10.9, De = 4.5, ν = 0.88; ( f ) Ca = 17.9, De = 14.9, ν = 0.91; (g) Ca = 28.8,
De = 48, ν = 0.85; (h) Ca = 10.9, De = 18.2, ν = 0.88; (i) Ca = 17.9, De = 29.9, ν = 0.91.

Ca, regardless of viscosity ratio (Narsimhan et al. 2014). Second, vesicle membranes
exhibit transient wrinkling when vesicles are exposed to the compressional cycle of
the oscillatory extensional flow. The transient wrinkling behaviour is examined later
in this section. These features are illustrated in figure 4, where a characteristic time
series of images of vesicle shape in LAOE is qualitatively compared with the equivalent
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t = 12.066 s t = 16.000 s t = 18.466 s t = 20.666 s t = 22.734 s

10.93T 11.25T 11.46T 11.64T 11.81T

Figure 4. Comparison of the experimental and simulation vesicle shapes in the symmetrical regime over one
flow cycle at the same conditions of Ca = 10.9, De = 3.0, ν = 0.88, � = 1.00. The times in the figure are in
seconds for the experimental movie. Shapes from the simulations at the same non-dimensional cycle times are
shown below. Here T is the non-dimensional period, defined as T = 1/De.
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Figure 5. Snapshots of vesicle shapes from simulations over a flow cycle for the three dynamical regimes.
The values under the figures are fractions of a strain rate period defined as T = 1/De.

numerical simulation. In general, vesicle shapes determined from experiments are in good
agreement with those determined from numerical simulations. Turning to the deformation
parameter plots (figures 2 and 3), we see the simulations and experiments agree well at the
majority of the tested parameters. Some of the experimental datasets show fluctuations in
the deformation over the strain rate cycles and disagreement between the simulations on
the maximum deformation. These discrepancies likely occur due to challenges in imaging
a three-dimensional (3-D) object in a 2-D plane and because the experiments are limited
to a few strain rate cycles. Nevertheless, we generally observe good agreement between
simulations and experiments in terms of the deformation parameter in transient flows.

Transient wrinkling dynamics were first reported by Kantsler et al. (2007) for a single
cycle of suddenly reversed extensional flow and subsequently elaborated upon by Turitsyn
& Vergeles (2008). Wrinkling behaviour is caused by a negative surface tension created
during vesicle compression. Moreover, a critical compression rate exists below which
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Figure 6. Snapshots of vesicle shapes from experiments over a flow cycle for the three dynamical regimes. The
values under the figures are fractions of cycle time T in seconds. Scale bar is 20 µm. False colour is applied to
the greyscale images for enhancing the resolution.

thermal fluctuations dominate the observed wrinkling. In our work, we study vesicle
dynamics in an extensional flow with smoothly varying sinusoidal strain rate dependence,
rather than an abrupt step-function reversal of compressional/extensional axes. We observe
qualitatively the same membrane wrinkling features as those reported in prior work. In the
experiments, we observe some wrinkling in the majority of the movies; it is unclear if
this is from thermal fluctuations or the negative surface tension. In the simulations, we
only observe significant wrinkling in the symmetrical regime. Our simulations do not take
into account thermal fluctuations, therefore, we hypothesize that the critical wrinkling
strain rate required for a given flow frequency is only reached in the symmetrical regime.
Additional experimental snapshots of vesicles showing wrinkling dynamics are included
in the supplementary materials (figures S2–S5).

Reorienting regime At lower Ca/De ratios (when Ca � 2De for ν = 0.80), the vesicle’s
major axis orientates along the x- and y-axes during the flow cycle, but the stretching
along these axes will no longer be equal. The creates a deformation parameter that is
negative during part of the cycle, but whose mean value is non-zero (figure 2d). We
note that in prior work on droplets in oscillatory extensional flow we do not observe
this behaviour, as only symmetrical deformation (i.e. equal deformation in the x- and
y-orientations) has been reported regardless of flow strength and oscillatory frequency (Li
& Sarkar 2005a,b). Single polymers in LAOE also deform symmetrically between the two
half-cycles for the range of Weissenberg and Deborah numbers studied in prior work (Zhou
& Schroeder 2016a). The phenomenon of asymmetric stretching of vesicles along the two
axes arises due to the enclosed membrane for fluid-filled vesicles. In particular, we posit
that the asymmetrical deformation occurs because the energetically preferred shape for
quasi-spherical vesicles at equilibrium is a prolate dumbbell (Seifert 1997). By deforming
in this asymmetrical manner, the vesicle shape deviates less from the equilibrium shape
over the strain rate cycle than it would if it deformed symmetrically.

Pulsating regime. At even lower Ca/De, the vesicle no longer reorients and simply
pulsates along one axis during LAOE. We refer to this dynamical regime as the pulsating
regime, which approximately occurs when Ca � 2De for ν = 0.80. Note that the strain
in the pulsating regime is not necessarily infinitesimal. As shown in figure 2(g), the
deformation parameter curve illustrates that vesicles are generally oriented along the x-axis
and can deform significantly in this regime. It is possible to probe the small amplitude
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Figure 7. Lissajous-type deformation parameter curves from an oblate shape initial condition and a prolate
shape initial condition. The legend at the top right in each panel indicates colour coding for the strain rate
cycle. The black circle marks the deformation parameter of the initial shape. The panels are (a) oblate initial;
(b) prolate initial.

oscillatory extension regime by keeping the De constant and reducing the Ca. In the
small amplitude regime, vesicles do not deform appreciably, and the Lissajous curve
approaches a constant value, thereby informing on the linear viscoelastic rheology of
vesicle suspensions. Similar behaviour occurs when increasing the De and keeping Ca
constant at small values. In this case, the membrane does not have appreciable time to
reorient during the time at which the strain rate changes.

3.2. quasi-spherical initial shape and orientation
The simulations discussed up to this point (including results in figures 5 and 2) were
performed using a prolate-like initial shape, because it is the global equilibrium shape
for reduced volumes ν 
 0.652 (Seifert 1997). These results suggest that the unequal
stretching observed in the pulsating and reorienting regimes occurs during the steady limit
cycle, for this particular initial shape. However, there are other local minimum energy
shapes for vesicles, such as the oblate shape family. To determine whether the pulsating
and reorienting regimes are possible with a different initial condition, we performed
simulations using an oblate shape such that the initial deformation parameter was set
to zero. We examined this initial condition because vesicle shape is isotropic in the x–y
plane, where an image obtained through optical microscopy would show a circle. The
oblate initial condition simulations test if the anisotropic deformations will still occur if
the vesicle starts with a shape isotropic in the x–y plane rather than an initially anisotropic
shape. Simulation results for the oblate initial condition are plotted in figure 7, which
shows that vesicle dynamics during the steady limit cycle for the oblate initial condition
(figure 7a) are the same as that observed from the prolate-like initial condition (figure 7b).
We repeated these simulations at several other capillary numbers and Deborah numbers,
observing no change in the dynamics.
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We additionally examined different starting orientations of the prolate initial shape.
Aligning the prolate vesicle with the y-axis instead of the x-axis does not change the
dynamics significantly. The symmetrical regime remains unchanged, while the pulsating
and reorienting regimes preferentially stretch along the y-axis instead of the x-axis. The
observed dynamics change when aligning the prolate vesicle along the z-axis – i.e.
orthogonal to the flow plane. At lower ratios of Ca/De, the vesicle deforms symmetrically
while maintaining the major axis orientation along the z-axis. At higher ratios of Ca/De,
the dynamics become the same as those observed in the symmetrical regime with other
starting orientations. We also simulated vesicles at other out-of-plane orientations and
found they can maintain their orientation at low ratios of Ca/De over 15 flow cycles.
Simulation movie files of vesicle dynamics starting from the z-axis orientation and angled
at 70 degrees between the x- and z-axes are included in the supplementary materials
(movies 8–10).

Experimentally, we have not observed any of the dynamics suggested by the simulations
with alternative starting orientations. It is unclear if these orientations are unstable to
perturbation or if the experimental methods limit the possible orientations of the vesicles.
One would need to use a microscopy method that can obtain z-axis information to better
understand the effect of starting orientation.

3.3. LAOE analysis considerations
In regards to the application of LAOE for vesicle analysis, we note that it may be
possible to extract some material properties of the vesicle by LAOE analysis. One could
fit the deformation parameter over time of an experimental run to that of a simulation
to approximate an unknown parameter, such as the reduced volume or capillary number.
There are significant error margins when approximating experimental parameters, such as
reduced volume, so confirmation with LAOE could be beneficial. We have not tested the
feasibility or accuracy of such a process in this study, however.

3.4. quasi-spherical phase diagrams
By comparing the deformation parameter results for each simulation, we can plot a
phase diagram of different dynamical regimes observed during oscillatory flows. Which
regime a vesicle experiences can be quantitatively determined by assessing the minimum
and maximum deformation parameter over a cycle. If both the minimum and maximum
deformation parameter are positive, the vesicle dynamics are classified as the pulsating
regime, reflecting that the vesicle does not change orientation. If the vesicle has a positive
maximum D and a negative minimum D, we check if the differences in magnitudes are
within a threshold value of 0.01. Should they be within 0.01 of each other, the vesicle is
in the symmetrical regime, since the vesicle reaches the same maximum length twice a
cycle. This threshold value was chosen heuristically to reflect the discretization accuracy.
If the magnitudes are not within this threshold value, vesicle dynamics are classified as the
reorienting regime. Results from this analysis are plotted in figure 8

The phase boundaries appear to be mostly linear, suggesting that the dynamics result
from a simple interaction between the flow frequency and the strain rate, Ca/De = �ε0/ω.
Here, we derive the phase boundaries in the limit of a quasi-spherical vesicle (Vlahovska
& Gracia 2007). For small excess area (Δ = 4�(ν�2/3 � 1) � 1), the vesicle shape
is characterized by a perturbation series in terms of spherical harmonics (Vlahovska
& Gracia 2007). In a planar extensional flow, there are only two modes excited for
the leading-order correction to the vesicle shape. When one solves for the deformation
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Figure 8. Phase diagrams for the low to medium to high deformation regimes for vesicles of reduced volume
ν = 0.80 and ν = 0.90. Lines in the diagrams are from the semianalytical theory presented near the end of
§ 3.1. Due to uncertainty in determining the Do value, a 5 % error has been included on the lines.

parameter as defined in (2.17), one obtains

D(t) = (L� � 1)
�

1 � 2
�

1 +
�

1 + Ao

1 � Ao

�
exp

�
60

�(32 + 23�)

Ca
De

1
L� � 1

[cos(2�De t) � 1]
���1

�

,

(3.1)

where parameters L� = 1 +
�

15/8(ν�2/3 � 1)1/2 and Ao = (ν�1/3lmax
x /2 � 1)/(L� �

1); lmax
x is the maximum x-axis length of the vesicle. For the detailed derivation of these

results, one can refer to the supporting material.
Following the definitions of the phase boundaries discussed previously, we can

derive the two phase boundaries in the limit of A0 � 1, i.e. ln((1 + Ao)/(1 � Ao)) �
1/(L� � 1) ln((1 + Do)/(1 � Do)),

Ca
De

=
�(32 + 23�)

120
log

�
1 + Do

1 � Do

�
for pulsating/reorienting phases, (3.2)

Ca
De

=
�(32 + 23�)

60
log

�
1 + Do

1 � Do

�
for reorienting/symmetrical phases. (3.3)

In the above equations, D0 is the maximum deformation parameter during the LAOE cycle.
Note that the value of Do is determined by our numerical runs at the highest Ca and De
numbers. Based on the quasi-spherical vesicle theory, the deformation phase boundaries
depend on the viscosity ratio, where the factor (23� + 32)�1 is related to the relaxation
time of the quasi-spherical vesicle (Vlahovska & Gracia 2007). Figure 8(a) shows the
phase boundaries are accurately calculated by using (3.2) and (3.3) when the reduced
volume is ν = 0.8. Increasing ν from 0.80 to 0.90 shifts the phase boundaries downwards,
but maintains a similar linear relation (figure 8b). We also simulated viscosity ratio � = 10
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and found that higher viscosity ratios shift the boundaries to higher capillary numbers. We
include the dynamics evolution of lx and ly (simulations versus analytical solutions) and
� = 10 results in the supplementary materials for brevity.

3.5. Stress response and dilute suspension rheology
For dilute vesicle suspensions where the macroscopic length scale is large in comparison
with the size of the vesicles, the extra stress (the bulk stress contribution from the particles)
is the product of the number density of particles and the particle stresslet: σ P

ij = n �SP
ij .

Using the BI formulation, we calculate the particle stresslet (Pozrikidis 1992)

�SP
ij =

�

D

1
2

([[ fi]]xj + [[ fj]]xi) dS �
�

D
(1 � �)μout(vinj + vjnj) dS, (3.4)

where [[ f ]] is the surface traction, � is the viscosity ratio, μout is the outer viscosity, v is
the velocity and n is the normal vector. We define the dimensionless particle coefficient of
stresslet as

Sij =
�SP
ij

�εμoutVp
, (3.5)

where Vp is the vesicle volume and �ε is the strain rate. Similarly the normal stress
differences are defined as

N1 = Sxx � Syy, (3.6)

N2 = Syy � Szz. (3.7)

Comparing the normal stress differences with the strain rate, we can derive the rheological
characteristics of a dilute vesicle suspension, such as the effective viscosity and bulk
normal stresses (Danker, Verdier & Misbah 2008). For extensional flow rheology, a key
quantity of interest is the extensional viscosity of a solution. Extensional viscosity is often
characterized using a quantity known as a Trouton ratio (ratio of extensional to shear
viscosity), which for a planar extensional flow is a multiple of N1. For a planar flow, the
extensional viscosity is

ηE =
σ11 � σ22

�ε
. (3.8)

The planar Trouton ratio is
ηE

η
= 4 + φ 
 N1, (3.9)

where φ is the volume fraction of vesicles in the suspensions, and N1 is the first normal
stress difference. Our simulations have focused on rather large deformations of the vesicle
shape, therefore, the stress response analysis will reflect the nonlinear viscoelasticity.

We examine the stress response for a vesicle that starts off oriented along the x-axis.
To link the single vesicle stress response to the expected bulk response for a suspension
of randomly oriented vesicles, one needs to average over all possible orientations.
Therefore, the following results would instead be indicative of a suspension of vesicles all
initially oriented along the x-axis. However, in the symmetrical regime, all of the starting
orientations we tested lead to the same dynamics for the limit cycle behaviour. It is possible
that the bulk stress response in the symmetrical regime at the limit cycle does not depend
on starting orientation. In the pulsating and reorienting regimes on the other hand, the
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Figure 9. Normal stress differences versus time for simulations in the pulsating, reorienting and symmetrical
regimes. Data over two strain rate cycles is plotted. The �ε/Ca dotted line is the strain rate of the external flow;
it is used to show the directionality of the flow. Parameters used are included in the figure legends. The panels
are (a) symmetrical regime; (b) reorienting regime; (c) pulsating regime.

stable orientations depend on several parameters that we have not examined in detail in
this study – as reported in § 3.2.

Using the definitions of the particle stresslet and normal stress differences, we determine
the vesicle stress as a function of time in extensional flow. In figure 9, we show the stress
response over two cycles for three sets of parameters; one from each of the three dynamical
regimes discussed before. A linearly viscoelastic material will show purely sinusoidal
normal stress differences for this type of plot, as there is a simple linear relation between
the strain rate and the stress. On the other hand, for nonlinear viscoelasticity, the normal
stress differences will display more complex behaviours.

Figure 9 shows that vesicle dynamics in the three regimes (symmetrical, reorienting and
pulsating) have nonlinear characteristics. To analyse these stress responses, we replot the
data from figure 9 into a Lissajous-type form with the instantaneous strain rate (Cax) on
the x-axis and the stress response on the y-axis (figure 10). For this type of plot, a purely
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Figure 10. Lissajous-type normal stress difference versus strain rate (Cax) curves for simulations in the
pulsating, reorienting and symmetrical regimes. The strain rate cycle is separated into four periods demarcated
by the line formatting. Parameters used are included in the figure legends. The panels are (a) symmetrical
regime; (b) reorienting regime. (c) pulsating regime.

viscous material would display a straight line, whereas a purely elastic material would
produce an elliptical curve. For example, the first and second normal stress difference
for Newtonian flow around a rigid sphere corresponds to the lines N1 = 10 × Cax/Ca and
N2 = �5 × Cax/Ca. Here, we focus on N1 because it is related to the extensional viscosity
of the solution (Trouton ratio). We also discuss the N2 stress differences for completeness.

In the symmetrical regime (figure 10a), we observe that N1 is symmetric across the
origin and that the lines for increasing and decreasing strain rate are nearly the same for
�2 < Cax < 2. On the other hand, N2 differs significantly depending on the directionality
of the flow. The N1 curve is mostly linear in the region �2 < Cax < 2 and is approximately
equal to zero when the strain rate is zero, suggesting that the vesicle contributes a
purely viscous response in that region. We further examine this region in more detail
by comparing the vesicle deformation with the stress response. From the simulation
movie and the Lissajous-type deformation parameter curve (figure 3), we know that
the vesicle retains a prolate spheroid-like shape and only changes marginally for the
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Vesicle dynamics in large amplitude oscillatory extension

�2 < Cax < 2 region. The relatively small amount of deformation that occurs in the
�2 < Cax < 2 region suggests that the vesicle acts like a rigid particle there, explaining
the close to linear stress response for N1 in the region. In the other strain rate regions,
the stress differences shift rapidly in accordance to the vesicle’s large deformations and
reorientation.

In the reorienting and pulsating regimes (figure 10b,c), the N1 curves are no longer
symmetric across the origin, and the stress responses for increasing and decreasing strain
rate are distinct. The maximum N1 response is larger in magnitude than the minimum
for both regimes; this is likely due to the unequal amounts of deformation between the
two strain rate period halves (figure 3). For this analysis, qualitative differences between
the shape of the reorienting and pulsating regime curves correspond to the extent of
asymmetry in the N1 response. Moreover, we observe vesicles in the pulsating regime
can have a non-zero normal stress difference when the time-dependent strain rate is zero,
as seen in figure 10(c).

For a more quantitative analysis, we decomposed the stress responses into a Fourier
series. A similar decomposition was performed by Farutin & Misbah (2012a) to
analytically examine the stress over vesicles over all orientations in small amplitude
oscillatory shear with a background constant shear rate under the quasi-spherical
assumption. This decomposition is commonly applied to large amplitude oscillatory shear
(known as LAOS) experiments and is known as Fourier transform (FT) rheology. The FT
rheology is commonly performed using oscillatory shear flows on polymeric liquids to
probe the shear stress response in the nonlinear regime (Wilhelm 2002; Hyun et al. 2011).
The computation is straightforward and relies on taking the FT of the N1 or N2 stress
difference,

f (k) =
� �

��
N1,2(t)e�2�itk dt. (3.10)

In this way, the periodic stress signal is transformed into frequency space. Because the
external flow field is sinusoidal, the strain rate ( �ε) and strain (ε) are proportional to sine
and cosine functions. Therefore, the Fourier transformed data provide a description of how
the stress depends on different orders of the strain and strain rate. If the stress response was
purely of a linear order, the Fourier transformation would show a single peak at the first
mode. A nonlinear stress response would have additional peaks at higher modes.

The Fourier decompositions for both N1 and N2 are shown in figure 11, where it is
clear that all three regimes show higher-order behaviour. For all regimes, we observe
the expected behaviour of the linear-order mode being the highest amplitude with the
higher-order modes decreasing monotonically for N1. On the other hand, the highest
amplitude mode for N2 is not the linear-order mode, with the highest generally being
the second or third mode. Comparing the N1 decompositions between the dynamical
regimes, we observe that the symmetrical regime does not have even-order modes, whereas
the reorienting and pulsating regimes have even higher-order modes. This change in FT
rheology is consistent with the phase boundary defined in § 3.1, and this transition can be
used instead of the deformation parameter analysis to demarcate the phase boundary.

In large amplitude oscillatory shear, the typical macroscopic stress response shows
that the stress is an odd function of the direction of shearing (Hyun et al. 2011). Such
a restriction is not necessarily expected in an extensional flow, but would be related to
whether the microstructure of the fluid stretches symmetrically during these flows. In the
symmetrical regime, both the vesicle stress response and deformation are time symmetric,
leading to only odd-order Fourier modes. The time symmetry does not hold for the
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Figure 11. Fourier decompositions of the stress responses for indicative parameter sets in each of the
dynamical regimes. The panels are (a) symmetrical regime; (b) reorienting regime; (c) pulsating regime.

reorienting or pulsating regimes, allowing for even-order modes. Based on the currently
available results, we do not expect droplets to have even-order Fourier modes in LAOE,
regardless of flow rate or flow frequency (Li & Sarkar 2005b). Broadly speaking, our
results show that membrane-bound vesicles are an interesting example of how anisotropic
microstructural deformations can lead to complex rheology.

3.6. Transient dynamics of tubular vesicles in large amplitude oscillatory extension
We also investigated the transient dynamics of tubular vesicles in large-amplitude
oscillatory extensions (figure 12). In general, we find that tubular vesicles undergo
wrinkling/buckling instabilities during the compression phase of the flow cycle similar
to quasi-spherical vesicles. However, we occasionally observe buckling instabilities that
induce unexpected shape changes. In these situations, the vesicle’s initial, tubular shape is
not recovered at the end of the flow cycle.
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Vesicle dynamics in large amplitude oscillatory extension

0 T/4 T/2 3T/4 T

0 T/4 T/2 3T/4 T
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(a)

Figure 12. Dynamics of a tubular vesicle with reduced volume ν = 0.64 – 0.02 in LAOE. (a) Snapshots
showing pulsating dynamics of a vesicle over one sinusoidal strain rate input cycle with time period T = 4 s
at Ca = 21.3 and De = 17.7. (b) Snapshots showing pulsating dynamics with wrinkles of a vesicle over one
sinusoidal strain rate input cycle with time period T = 8 s at Ca = 21.3 and De = 8.9. (c) Snapshots showing
change in the 2-D shape of a vesicle over one flow cycle with time period T = 15 s at Ca = 21.3 and De = 4.7.
Scale bar is 20 µm. False colouring is applied to the greyscale images for resolution enhancement.

Figure 12(a) shows experimental snapshots of a tubular vesicle with reduced volume
ν = 0.64 – 0.02 exposed to a sinusoidal strain rate at Ca = 21.3 and De = 17.7. In this
situation, the vesicle exhibits pulsating motion along the x-axis with buckles during the
compressional part of the flow cycle. The vesicle’s starting, tubular shape is recovered at
the end of the LAOE cycle. To further demonstrate this behaviour, we construct single
vesicle Lissajous curves (figure 13d) defined as plots of the deformation parameter as a
function of Ca, and the deformation parameter as a function of time (figure 13a). These
plots show the vesicle reaches the same value of deformation parameter D � 0.7 at the
end of each of the three repeated flow cycles, implying that the vesicle conformation is
fully recovered after deformation. There is decent agreement in the qualitative dynamics
between the simulations and experiments in this region, but the simulated deformation
parameters appear to be lower than the ones measures experimentally.

When the same vesicle is exposed to a flow cycle at a lower frequency (De = 8.9), the
membrane has more time to deform in response to the flow. Here, the vesicle undergoes
pulsating motion with wrinkles (figure 12b) and we observe appreciable deformation along
y-axis in both the simulations and experiments, as shown in figure 13(b,e). Surprisingly,
the experimental results show the vesicle deformation parameter reducing with each
subsequent LAOE cycle. The deformation at the end of first cycle is D � 0.7 and it
decreases to D � 0.6 at the end of second cycle, and further to D � 0.5 at the end of third
cycle. Experimentally, it seems that the vesicle conformation changes over each LAOE
cycle while our simulations predict no change over the strain rate cycles. By the end of
the third repeated cycle, we experimentally observe that the 2-D shape of vesicle appears
to be more spheroidal than tubular. Interestingly, the vesicle did not recover its original
tubular shape even when relaxed for � 2 min. It is noteworthy that we did not observe
any reduction in deformation parameter at the higher flow frequency discussed previously
(De = 17.7). These observations suggest that for a given Ca, there appears to be a critical
De below which the change occurs.

Finally, the same vesicle is exposed to a LAOE flow cycle with an even lower
frequency (De = 4.7). We observe that the vesicle undergoes full reorientation from
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Figure 13. Experimental and simulation single vesicle Lissajous curves and deformation plots for ν = 0.64.
For each panel: (a) Ca = 21.3, De = 17.7, ν = 0.64; (b) Ca = 21.3, De = 8.9, ν = 0.64; (c) Ca = 21.3, De =
4.7, ν = 0.64; (d) Ca = 21.3, De = 17.7, ν = 0.64; (e) Ca = 21.3, De = 8.9, ν = 0.64; ( f ) Ca = 21.3, De = 4.7,
ν = 0.64.

the x-axis to y-axis, undergoing a wrinkling instability during compression, and the
initial spheroidal shape changes to a more spherical shape at the end of the first
periodic cycle (figure 12c). The deformation behaviour seen experimentally during the
second repeated cycle is symmetric and follows similar dynamics as those observed for
quasi-spherical vesicles. This behaviour is more apparent in figure 13(c, f ) which shows a
slight reduction in deformation at the end of the first cycle. We observe a large difference
in deformation between the simulations and experiments at these parameters. Where the
simulations predict the vesicle stretching to D � 0.63, the experiments only reach D �
0.25. Additionally, the simulations show that the vesicle does not deform symmetrically
at these parameters, reaching D � �0.5 and D � 0.6. The experiments were performed
sequentially from the higher to lower De on the same vesicle in the experiments, and it
seems that the gradual change in vesicle deformation is carried over from the previous
experiments.

In summary, the experimental data in figures 12 and 13 show that the maximum
deformation of tubular vesicles may decrease in repeated LAOE cycles and the initial
tubular shape may not be recovered. In contrast, the quasi-spherical vesicles always
recover a prolate shape following repeated LAOE deformation cycles. We conjecture
that the observation of shape transition from prolate tubular to oblate spheroid during
LAOE deformation in figure 12(b,c) can be explained in the context of the area-difference
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0 T/4 T/2 3T/4 T

Figure 14. Asymmetric dumbbell formation in a vesicle with reduced volume ν = 0.69 exposed to LAOE
flow at Ca = 52.5 and De = 1.2. Scale bar is 10 µm.

elasticity model (Seifert 1997). Briefly, the negative membrane tension on the vesicle
membrane during the compressional phase of LAOE flow leads to a decrease in area
per lipid which reduces the preferred monolayer area difference (Avital & Farago 2015;
Sakashita et al. 2012). The decrease in monolayer area difference triggers the shape
transition from a prolate tubular shape to an oblate spheroid in accordance with the ADE
model (Seifert 1997; Ziherl & Svetina 2005). This hypothesis is consistent with prior
observations where the prolate to oblate transition was triggered by chemical modification
of the ambient environment of vesicles (Kodama et al. 2018). Resolving what exactly
is occurring during compressional flow requires additional experiments, likely with 3-D
confocal microscopy to obtain the full 3-D vesicle shape.

Additional experimental data on dynamics of highly deflated vesicles (ν = 0.35) is
included in the supplementary material (figures S6 and S7).

In steady extensional flow with De = 0, the critical capillary number required to trigger
dumbbell shape transition is a function of reduced volume and the comprehensive phase
diagram in Ca–ν space has been reported in an earlier work (Kumar et al. 2020a).
The dumbbell-like shape has also been observed in simulations of a reduced volume
ν = 0.60 vesicle in a steady shear flow (Farutin & Misbah 2012b). Figure 14 qualitatively
demonstrates how oscillatory extensional flow alters these shape instabilities. At De = 1.2,
we observe that the critical capillary number Ca required to induce an asymmetric
dumbbell is much higher compared with steady extensional flow at De = 0. For instance,
the critical Ca required to generate an asymmetric dumbbell in steady extension for ν =
0.69 is � 5.3 (Kumar et al. 2020a). However, in LAOE flow at De = 1.2, the transition
to a dumbbell shape occurs at Ca = 52.5 which is approximately 10 times higher than
the critical Ca for steady flow. This observation can be rationalized by considering the
competition between flow cycle time T and the inverse of the predicted growth rate of
asymmetric instability from linear stability analysis (Narsimhan et al. 2015). Briefly, the
presence of flow oscillations (De > 0) prevents any instability formation which requires
a time scale larger than cycle time T . Thus, a large Ca is needed to reduce the time scale
of instability sufficiently to observe the dumbbell formation within the flow cycle time
T . While it is possible to explore the phase diagram describing conformation change to
asymmetric/symmetric dumbbell on Ca–De space for the entire range of reduced volumes
using the Stokes trap, the parameter space is vast and it remains a ripe area for future
numerical simulations.

4. Conclusions

In this work, we examined the dynamics of vesicles in LAOE flow using both
experiments and numerical simulations. The experiments were carried out using the
Stokes trap experimental technique while the simulations were done with the boundary
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element method. For quasi-spherical vesicles, the simulations are found to capture the
transient wrinkling dynamics as well as the overall vesicle shapes from experiments.
We have identified three dynamical regimes based on their deformation characteristics
and named them the symmetrical, reorienting and pulsating regimes. Based on these
results, we generated a phase diagram in capillary number and Deborah number space
for the dynamical regimes; our data suggest that the phase boundaries are linear. The
unique deformation observed in the pulsating and reorienting regimes also has interesting
effects on the stress response in that the time symmetry of the stress does not hold.
Additional analysis of the stress response and confirmation by experimental studies is
required for a better idea of the dynamics. Finally, we presented results on highly deflated
tubular vesicles which shows that lower reduced volume vesicles tend to undergo a shape
change following repeated LAOE deformation. From a broad perspective, we have shown
through experiments and simulations that the vesicle system shows interesting dynamics
in extensional oscillatory flows. We have also shown how microstructural changes from
extensional and compression of a cell-like suspension can affect the overall rheology.
Similar dynamics might be observed in other cell-like systems such as red blood cells
or single-celled organisms, prompting additional study into time dependent flows for these
systems.

Supplementary material and movies. Supplementary material and movies are available at https://doi.org/
10.1017/jfm.2021.885.
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